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Abstract 

 
Fetal movements are crucial signs of the fetus' well-being 
and are clinically monitored with self-reports or wearable 
detectors. However, wired detectors worsen mothers' 
labour, and wireless ones are still not adopted due to their 
higher cost. Radiofrequency identification (RFID) can be 
exploited to develop low-cost solutions for detecting fetal 
movements based on tag response variations. In this 
contribution, a wearable RFID grid for fetal monitoring is 
manufactured and tested. Even though the backscattered 
EM wave unpredictably changes when tags are displaced 
by a probe emulating a foot of a 20-week-old fetus, a 
decision tree for classification detected motionless and 
moving tags with accuracy > 91% in the preliminary test. 
 
1 Introduction 
 
Fetal movements are signs of a fetus' well-being directly 
observable by mothers and physicians, usually from the 
20th week of gestation. The absence of such movements can 
indicate fetus is suffering and must be cared for to preserve 
it from stillbirth. Mothers can follow several procedures to 
assess fetuses' health based on the number of perceived 
movements; for instance, a healthy baby should move ten 
times in 30 minutes when awake [1]. However, self-
reporting by the mother is prone to errors, especially if she 
is anxious about her baby's health [2]. Instruments 
measuring the number of movements are hence used for 
medical checks, particularly right before the birth of the 
newborn [2]. Classical wired devices like cardiotocographs 
are highly uncomfortable for the mother during labour, 
though, and wireless devices are still little employed due to 
their higher cost [2], so developing novel solutions is a 
current research topic [3,4].  
 
A low-cost wireless solution could be achieved by 
radiofrequency identification (RFID) technology. RFID 
was successfully tested for sensing little movements based 
on the strength and phase of the backscattered wave [5]-
[7]. This contribution proposes, for the first time, a 
wearable grid of RFID tags and an ML algorithm to 
monitor fetal movements (Figure 1(a)). Given that 
embryos and fetuses are sensible organisms that must be 
protected from EM exposure [8], a shielding conductive 
layer between the tags and the mother is needed to protect 
the mother and unborn from harm. The presence of the 
conductive layer and the variable inter-tag coupling during 
movements, in turn, are expected to alter the responses 
from the tags unpredictably. Machine learning (ML)  
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Figure 1. (a) Concept of the RFID system for monitoring 
fetal movements. (b) A woman in the 24th week of 
pregnancy wearing the ground plane of the grid. 
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Figure 2. Manufacturing of the RFID grid. (a) The layout 
of the grid, the geometrical tesselation of the area to be 
monitored, and the tags' numbering. Tags (1,2,5,6) cannot 
be moved and are circled in red. (b) Prototype of the RFID 
grid. 

 
techniques will be hence necessary to exploit the complex 
relationship between fetal movements and the EM 
data [6],[7],[9]. In the following pages, the RFID system is 
described and characterized. Then, the utilized ML 
technique is introduced, and preliminary experimentation 
with a rounded cylinder emulating the foot of a fetus is 
detailed. 
 
2 RFID System 
 
2.1 System Description  
 
The RFID system is constituted of a reader and a grid of 
tags continuously monitoring the mother's abdomen while 
protecting the fetus from radiofrequency power. The RFID 
grid employs a copper thread (thickness: 1.4 mm) to shield 
the mother's abdomen from the interrogating field, and the 
tags are fixed onto the shielding tissue.  
 



Figure 3. Turn-on power of the RFID grid when fixed to 
the homogeneous liquid phantom. In the left inset: the 
RFID grid on the liquid phantom. In the right inset: 
zoomed-in view of one RFID tag of the grid and its 
polarization. 

 
Based on [10], an area of 25 cm x 20 cm is suitable for 
covering one whole side of the uterus (Figure 1(b)). The 
grid prototype investigated here covers such an area, even 
though a more extended ground plane should be used in 
future to avoid border effects and currents flowing on the 
copper thread. Ten tags for on-metal applications (PQS-
SR-03 by PQSense, which are folded patches with a 
ceramic substrate) are attached to the copper tissue to cover 
the entire area according to regular geometrical 
shapes (Figure 2(a)). The tags are linearly polarized like 
the reader's antenna (log-periodic antenna AN-FF-WB by 
Voyantic) so that polarization losses are minimized. The 
copper thread and the medical tape (Tegaderm by 3M) used 
for fixing the tags are breathable materials optimal for 
wearable applications. Figure 2(b) shows one prototype of 
the RFID grid. The interrogation software used for the 
experimentation reported next can interrogate the entire 
grid in about one second so that a dataset of 18,000 
responses can be created during the 30 minutes usually 
employed for monitoring fetal movements.  
 
2.2 EM Characterization 
 
The grid is characterized by tags' turn-on powers (𝑃்௢; the 
minimum power the reader has to generate to obtain a 
response from the tag) when the reader antenna is placed at 
a safe distance from the mother. According to [8], RFID 
readers should be distant from the mother ≥50 cm and 
placed on the coronal anatomical plane of the mother; 
consequently, 50 cm between the center of the phase of the 
reader's antenna and the grid's center was the distance used 
to characterize the grid. 𝑃்௢  was measured (reader: 
Tagformance by Voyantic) when the grid was attached to 
a liquid phantom emulating human tissue (dielectric 
permittivity 54 + 𝑗21,  conducibility 1.05 S m⁄ ,  by 
SPEAG). Despite differences in the 𝑃்௢ values due to the 
different positions, border effects, and the variability 
between the commercial-off-the-shelves tags, all tags have 
𝑃்௢ ≤ 30  dBm at 905 MHz, so that was the operating 
frequency investigated (Figure 3). 

 

Figure 4. Picture of the grid interrogation while one tag 
was displaced to reproduce a kick of a 20-week-old fetus. 
In the inset: the cylindrical probe which reproduces the 
fetal foot. 

 
3 Preliminary Experimentation 
 
The RFID grid should detect fetal movements through 
changes in the RSSI and phase from the tags when they are 
worn by the mother and are continuously queried by the 
reader. Movements are expected to modify the distance 
between the grid and the reader, the EM coupling between 
the tags, and the reflections caused by the copper tissue. In 
this preliminary investigation, the reference case when the 
deformation happens right under one mobile tag is 
explored. 
 
To observe the effects of the movements on the tags' 
responses, a cylindrical probe simulating the movements of 
a 20-week-old fetus was manually moved when recording 
the timing of the movements [3]. The wooden scaffold kept 
the grid in place while a displacement of 10 mm was 
imposed for 3 seconds right under the tag, reproducing the 
movement of such a fetus [3] (Figure 4). The responses of 
the ten tags were recorded by custom software piloting an 
M6e reader (by ThingMagic). The tags number (1,2,5,6) 
were fixed to the wooden scaffold and were not moved 
since those tags should be used as reference points to 
monitor the eventual movements of the mother, which are 
not considered yet in this investigation. Five movements 
per tag were completed using the cylindrical probe in 
sessions of 75 seconds. 
 
Figure 5 reports the responses of the six mobile tags when 
the deformation is impressed right under the tags; for the 
sake of visualization, the contemporary responses of the 
other nine tags are not plotted. It is evident that the tags' 
responses change when the cylindrical probe touches the 
grid, yielding abrupt variations of the RSSI and/or the 
phase (Φ). 
 
4 Decision Tree for Movements Detection 
 
Since no trivial relationship between the EM tracks and the 
movements to be counted exists, ML was exploited to 
discriminate responses by moving tags from those by 
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Figure 5. The response of the six mobile tags during their respective 75-second-long session. Vertical rectangles indicate when 
the displacement of the tag is impressed. 

 

 (a) 

 (b) 

 

Figure 6. Performance of the decision tree on the feature's 
plane during (a) training and (b) test.  

motionless tags. Among several possible techniques, a 
decision tree was trained for its easy implementation and 
integration with standard software for RFID [9]. Decision 
trees are supervised algorithms splitting data according to 
conditional relationships that the machine learns based on 
the training phase. Their strengths include the capability of 
dealing with data of different natures and the easiness of 
visualization, whereas their primary liability is a high 
sensitivity to changes in the training dataset, limiting their 
predictive power [11]. The features' space is thus divided 
into two sub-spaces at each decision until classification is 
decided so that a fine tessellation of the feature's space is 
achieved. Given a threshold Τ and the XOR operator (⊻), 
conditional relationships will hence be expressed in the 
form 
 

[𝑅𝑆𝑆𝐼 ⊻ Φ] ⋛ Τ. (1) 
 
By considering the pair {𝑅𝑆𝑆𝐼, Φ}  of each response 
obtained during the grid interrogations as an input, the 
overall gathered dataset is composed of 4230 data, of which 
429 were collected during a movement (class 1 for the 
classifier to be trained). 80% of the 429 responses were 
used for training, and the dataset was balanced, yielding a 
training dataset of 858 {𝑅𝑆𝑆𝐼, Φ}  pairs. The tree was 
trained using the labelled dataset through 
MATLAB R2019b and verifies conditions on RSSI or Φ 
without considering any combination of them. The training 
dataset was extracted from all the data casually. 
 
The tree was validated using K-fold cross-validation where 
the training set is divided into 𝐾  subset and, for each 



iteration of training, (𝐾 − 1) subsets are used to obtain a 
classification tree, while the remaining subset is used to 
compute the efficiency. 𝐾 = 10 was used since this value 
returns a conservative estimate of the algorithm 
performances if the training set represents the phenomenon 
fully [12]. A five-layer tree classifying the input based on 
six conditional relationships maximum returned the best 
performance on the training dataset, reaching 96.1% of 
correct classifications (Figure 6(a)). 
 
After training, the decision tree was tested on the whole 
dataset. The machine still achieves reliable performance, 
and 91.8% of the data is classified correctly (Figure 6(b)). 
Thanks to the ML approach, it is possible to exploit the 
complex relationship between the variations of the EM 
response and the tag's movement. From the scatter plots in 
Figure 6, it is evident that most errors are false positives; 
namely, a movement is detected when the tag is stationary. 
This limitation of the classifier is due to the training dataset 
not representing class 1 adequately so that a more balanced 
training set, tags designed to have sharper {𝑅𝑆𝑆𝐼, Φ} 
variations (e.g., highly-directive radiation patterns), as well 
as more sophisticated ML techniques, can achieve higher 
accuracy. 
 
5 Conclusion 
 
A wearable RFID grid for counting fetal movements 
through ML was manufactured and tested. All the tags of 
the grid can be continuously interrogated without posing 
any risk to the health of the mother or the baby, thanks to a 
copper tissue acting as an EM shield. A decision tree was 
then trained and tested over the responses gathered through 
a cylindrical probe that reproduces the movements of a 
fetus 20 weeks old. The decision tree achieved an accuracy 
higher than 91% in detecting the movement of a tag, even 
if the displacement was as short as 10 mm. The feasibility 
of employing RFID grids for monitoring fetal movements 
was proven, and the accuracy of the system can be 
increased further by exploiting the entire recorded tracks of 
all the tags and their relationships instead of individual 
{𝑅𝑆𝑆𝐼, Φ} pairs. Furthermore, future works can improve 
the preliminary system by designing optimized tags for the 
grid, employing a broader ground plane and more tags, and 
testing the sensing capabilities of the grid. 
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