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Communication
Body-UAV Near-Ground LoRa Links through a Mediterranean Forest

Giulio Maria Bianco, Member, IEEE and Gaetano Marrocco Senior Member, IEEE

Abstract—LoRa low-power wide-area network protocol has
recently gained attention for deploying ad-hoc search and rescue
(SaR) systems. They could be empowered by exploiting body-UAV
links that enable communications between a body-worn radio
and a UAV-mounted one. However, to employ UAVs effectively,
knowledge of the signal’s propagation in the environment is
required. Otherwise, communications and localization could be
hindered. The radio range, the packet delivery ratio (PDR), and
the large- and small-scale fading of body-UAV LoRa links at
868 MHz when the radio wearer is in a Mediterranean forest
are here characterized for the first time with a near-ground UAV
having a maximum flying height of 30 m. A log-distance model
accounting for the body shadowing and the wearer’s movements
is derived. Over the full LoRa radio range of about 600 m,
the new model predicts the path loss (PL) better than the state-
of-the-art ones, with a reduction of the median error even by
∼ 10 dB. The observed small-scale fading is severe and follows
a Nakagami-m distribution. Extensions of the model for similar
scenarios can be drawn through appropriate corrective factors.

Index Terms—Aerial communication, LoRa, off-body links,
path loss, UAV, wearable antennas.

I. INTRODUCTION

LoRa is a convenient low-power wide-area network protocol
that can enable kilometric communications by low trans-
mission power [1]–[3]. It is hence extremely promising for
fostering search and rescue (SaR) missions [4] that usually
take place in harsh environments like mountains [5], disaster
areas [6], and forests [7]. Forested areas, in particular, are
challenging scenarios for LoRa devices due to the detrimental
effects of vegetation on path loss (PL) [8], [9]. Indeed,
the radio range is lowered down to a few hundred meters
independently from the selected transmission parameters [10]–
[12]. Indirect propagation can even be forbidden [13], and
the PL heavily depends on the density, type, and age of the
vegetation [14].

To the authors’ best knowledge, even though terrestrial
LoRa links in forests were already investigated, air-ground
(AG) links in such environments have never been considered.
Instead, unmanned aerial vehicles (UAVs) and systems (UASs)
are game-changing technologies for SaR missions. They could
dramatically increase the survival chances of the targets to
be rescued by avoiding terrestrial obstacles and speeding up
operations through near-ground flights having altitudes of tens
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Fig. 1. Sketch and parameters of the propagation scenario for a body-UAV
LoRa communication through a Mediterranean forest.

of meters [15], [16]. Thus, body-UAV links, viz., electromag-
netic links between a body-worn device and a UAV [17], can
maximize the benefits of using wearable LoRa devices [18].
However, available ground-UAV propagation models are not
suitable for describing the signal attenuation in forests since
they are tuned for urban environments mainly and do not
account for the presence and movements of the radio wearer.

By expanding the preliminary results in [19], this paper
presents for the first time the characterization of low-altitude
body-UAV LoRa non-line-of-sight (NLoS) links through a
Mediterranean forest (Fig. 1). In the considered scenario, the
user wearing a LoRa receiver is moving inside the forest, while
a SaR quadcopter, equipped with a LoRa transmitter, is hover-
ing just outside the forest. Near-ground altitudes (h ≤ 30 m)
are considered to reproduce fast, on-site deployment of a low-
cost drone that broadcasts emergency signals, can be carried
by terrestrial SaR teams, and could swiftly become unstable,
displace or discharge due to turbulent winds if its altitude is
not low enough [20]. As body-UAV links combine AG and off-
body links, the derived empirical model includes the equivalent
gain of the on-body antenna and the polarization losses, and
it is compared with existing AG models.

II. METHODS AND INSTRUMENTATION

A. Body-UAV Propagation Modeling

The PL of channels involving a terrestrial radio and a low-
flying UAV is here modelled by a log-distance representation
which depends on the flying height of the UAV [21], [22].
This approach avoids the use of a reference terrestrial PL [23].
Furthermore, off-body links need to account for the variable
Tx-Rx angular arrangements and the movements of the radio’s
wearer. The gain of the body-worn antenna and the polariza-
tion losses are hereafter taken into account using a numerical-
statistical approach [18], as detailed in §II-B, whereas the
movements can cause unpredictable body shadowing and
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polarization losses and, thus, additional fluctuations of the
signal’s strength.

With reference to Fig. 1, for a given frequency and indirect
propagation, the AG link is parametrized [21] as

PLm (d3D, h) = PLm (d0) + 10γ · log10 (d3D)− ηh, (1)

where PLm is the mean PL, d3D is the Tx-Rx tridimensional
distance between man and UAV, h is the UAV flying height,
d0 is a reference distance in the far-field of the transmitter
(d0 = 1 m in the following), γ is the path loss exponent,
and η is the altitude impact factor. The parameters fitting the
experimental data are hence {PL (d0) , γ, η}.

Small- and large-scale fluctuations are accounted for by the
instantaneous path loss (PLi). The small-scale fading fsm
includes the fluctuations within the order of a wavelength λ [8]
and can be filtered out by means of a ±λ/2 moving window
average [21]. PLm is derived by application of least-square
fitting to the PL measurements through (1) after the removal of
the small-scale fading. Finally, a zero-mean gaussian shadow
fading with standard deviation σSF [21] models the remaining
large-scale differences between the instantaneous and the mean
PL. The PLi is hence written as

PLi (d3D, h) = PLm (d3D, h) + fsm +N (0, σSF ) . (2)

PLi (d3D, h) is derived from the received signal strength
indicator (RSSI) and signal-to-noise ratio (SNR) recorded by
the receiver LoRa board [3], [18] as

PLi (d3D, h) = PTx +GTx +GRx + χ+

+ 10 · log10
(
1 +

1

SNR

)
−RSSI (3)

being PTx the transmission power, χ the polarization loss
factor (PLF) between the Tx and Rx antennas, and GTx

and GRx the corresponding radiation power gains. The PL
calculated in (1) and (2) and all the terms in (3) are exposed
in the dB scale except for the SNR, which is in the linear
scale.

Since the resulting model fits experimental data, it will be
accurate under the same environmental conditions as during
the data collection. Nevertheless, different conditions that can
affect the signal’s strength and increase the difference with
the expected PL can be accounted for by an appropriate
corrective factor ξ of the PLm computed according to (1).
The refined estimation of the median path loss (PL′

m) can be
hence expressed as

PL′
m (d3D, h) = PLm (d3D, h) + ξ. (4)

The corrective factor can be parametrized regarding the dif-
ference of RSSI (∆RSSI) and SNR (∆SNR) between the
values in the new conditions and the reference ones

ξ (∆RSSI, SNR,∆SNR) = −∆RSSI+

+ 10 · log10
[
1 + 10−(SNR+∆SNR)/10

]
(5)

where all the terms in (4) and (5) are in the dB scale. As
reported by the literature on LoRa, {∆RSSI,∆SNR} could
depend on the type of vegetation (e.g., Malaysian palm [24],

(a) (b)

(c) (d)

Fig. 2. Numerical simulations of the on-body receiver. (a) Phantom of the
body-worn antenna with the coordinate reference system. Polar plots of the
receiver’s gain according to the anatomical planes: (b) transverse and (c)
sagittal and coronal planes. (d) CCDF of GRx and the PLF.

Japanese mountainous forest [25], eastern China mixed for-
est [26]), season [27]–[29], weather [29]–[31] and the relative
speed between the antennas yielding to significant Doppler
effect [32], [33].

B. Equivalent Gains and Polarization Losses

The computation of (3) requires estimating the parameters
{GTx, GRx, χ}. Under the assumption that the radiation pat-
terns of the two antennas are not very directive and that the
range of the relative movements between them is limited,
the gains of the transmitter and the receiver are considered
invariant with respect to their mutual orientation and distance.
In particular, the transmitter’s gain is fixed to GTx = 0 dBi
since the position of the antenna onboard the UAV can be
properly optimized to provide a reasonable and uniform gain
towards the ground. The receiver’s effective gain and the PLF

χ = |ρ̂Tx · ρ̂∗Rx|
2 (6)

with ‘∗’ the conjugate operator, ‘·’ the inner product, and
ρ̂Tx/Rx the unitary polarization vector of the Tx/Rx, are
instead estimated through a statistical approach. The method
is conservative and accounts for the body shadowing by
numerical simulations1 involving a homogeneous anatomical
phantom of the human body2. The phantom is made of
muscle-like material (conductivity σ = 1.56 S/m-1; relative
permittivity ϵr = 51.6; density 1055 kg/m3 [34], [35]) and
stands on an infinite, perfect electric conductor (PEC) ground.
The simulated LoRa dipole (a 1-mm-wide and 35-µm-thick
copper trace long 155 mm; Fig. 2(a)) is placed at 5 mm from
the skin, as it was in a pocket during the experiments. Both the

1Numerical simulations performed through CST Microwave Studio 2018.
2The model is available at https://grabcad.com/library/corpo-humano-

masculino-adulto-by-jari-ikonen-rev-01-1.
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TABLE I
EMPLOYED LORA’S TRANSMISSION PARAMETERS.

Transmission Transmission
parameter Value parameter Value
Transmission power 14 dBm Bandwidth 125 kHz
Carrier frequency 868 MHz Coding rate 4/5
Spreading factor 7 Message rate 4−1 msg/sec

(a) (b)

(c)

Fig. 3. UAV equipped with the LoRa transmitter: (a) side and (b) top view.
(c) Satellite view of the forested area. The position of the hovering UAV and
the path walked by the volunteer are highlighted.

transmitting and receiving dipoles form a 30o-angle with the
planes parallel to the ground so that i) nulls in the radiation
pattern of the dipoles are not expected along the ray path,
ii) the dipoles’ axes stay parallel for maximum polarization
coupling, and iii) movements of the UAV’s rotors are not
hindered.

GRx and χ are computed over the half-space free from
the PEC ground (i.e., 0o ≤ ϕ ≤ 180o) with a 1o resolution.
Fig. 2(b,c) show the polar plots of the gain over the three
principal anatomical planes. Then, the effective values to
be used in (3) are derived from complementary cumulative
distribution functions (CCDFs) as the minimum value that
is guaranteed in 75% of the Tx-Rx angular arrangements.
The receiver’s versor is obtained from simulations, whilst
constant ρ̂Tx = − cos (30o) x̂ + sin (30o) ŷ is considered for
the transmitter. Overall, the values GRx (CCDF = 75%) =
−11.0 dBi and χ (CCDF = 75%) = −6.2 dB (Fig. 2(d)) are
finally inserted in (3) to derive PLi. The resulting PL model
will account for the residual variability that is not captured by
this approximation.

C. Link Characterization

The link is characterized based on i) the maximum com-
munication range, ii) the packet delivery ratio (PDR; the ratio
between received and sent packets), iii) the large-scale fading
and iv) the small-scale fluctuations. The large-scale fading
comprises the mean PL and the large-scale fluctuations.

As mentioned above, this work considers the rapid changes
of the signal strength over a short distance on the order
of a wavelength [8], [36] as small-scale fading. This is a
crucial phenomenon for predicting outage probability since
such fading can be as high as 40 dB [36] and can follow
several different statistical distributions. According to [21],

TABLE II
MAXIMUM OBSERVED COMMUNICATION RANGE AND PDRS FOR THE

THREE FLYING HEIGHTS OF THE UAV.

h = 3 m h = 10 m h = 30 m
Radio range 597 m 676 m 589 m
PDR 93.7% 91.9% 91.0%

the small-scale fluctuations are analyzed with a spatial moving
average and by fitting its empirical statistical distribution using
a set of trial fits, viz., log-logistic, Nakagami-m, Weibull,
Rayleigh, and Rician. The fade depth is the difference (in
decibel scale) of small-scale signal fading between the 50%
and 99% levels, which are computed as in [37], and denotes
the possible expected fluctuations.

The statistical validity of the estimated PL (EPL) model is
verified by calculating the relative standard error of the mean
(RSE) for each {d3D, h} pair as [23]

RSEPLm
(d3D, h) = σSF

[√
M (d3D, h)PLm (d3D, h)

]−1

(7)

being M (d3D, h) the number of PLi (d3D, h) measurements
averaged, after subtracting the small-scale fading, to obtain a
measurement of the large-scale PL for each pair.

Finally, to assess the improvement in accuracy of the PL
prediction, the derived EPL is compared with known AG
models suitable for LoRa indirect propagation. The considered
models are i) 3GPP urban macrocell (UMa) NLoS [22], ii)
3GPP optional UMa NLoS model [22], iii) 3GPP optional
urban microcell (UMi) [22], and iv) Cui’s NLoS model at
1 GHz [21]. These models that describe large-scale fading are
optimized for urban scenarios and assume a fixed terrestrial
radio. The accuracy of each model is evaluated by considering
the difference between the EPL and PLi.

D. Measurement Set-Up

The experimental LoRa system comprises two LoPy-4
boards (by Pycom; datasheet available online [38]) connected
to commercial half-wavelength dipoles. The LoRa transmis-
sion parameters (Table I) maximize the RSS seen by the UAV
and the message rate in compliance with the European duty-
cycle limitations [3]. The UAV is a low-cost quadcopter for
fast deployment (FreeX model by Only Flying Machines). The
transmitting board is fixed to the quadcopter (Fig. 3(a,b)),
while the body-worn receiver is tied in the pocket of the jacket
of a volunteer. The dipoles form the same 30o-angle with the
ground as in the simulations.

The forest for the experiment is in Colle Romito (Ardea,
Lazio, Italy; maximum extension ∼ 720 m; GPS coordi-
nates 41o33′01.9”N 12o35′08.4”E) and is mostly composed
of poplars (scientific name ”Populus tremula”). The trees
are young adults, not pruned, and approximately 10 m tall.
All measurements were completed on sunny days (relative
humidity ∼ 30%, temperature ∼ 25 Celsius). The Doppler
effect was neglected as the maximum relative speed between
the antennas was about 1 m/s. Overall, about 1300 data were
collected during the measurements.

The transmitting UAV hovered at the limit of the forest, at a
fixed flying height, without moving. In this way, there is some
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TABLE III
PATH LOSS MODEL PARAMETERS FOR BODY-UAV LINKS.

Mediterranean 3GPP UMa 3GPP UMa 3GPP UMi Cui’s NLoS
Model forest (this work) TR 38.901 [22] TR 38.901 optional [22] TR 38.901 [22] (1 GHz) [21]
PL exponent γ 4.19 3.91 3.00 3.53 2.00
PL intercept PL(1 m) 10.69 dB 13.21 dB 31.17 dB 21.54 dB 61.18 dB
Altitude impact factor η 0.12 dB (m)−1 0.60 dB (m)−1 Absent 0.30 dB (m)−1 1.19 dB (m)−1

Shadow fading σSF 8.05 dB 6.00 dB 7.80 dB 7.82 dB 3.60 dB
Median difference
with measurements 7.34 dB 14.96 dB 11.44 dB 13.37 dB 17.00 dB

flexibility in enforcing the hovering height when transmitting
emergency signals to warn and group people in the area [3],
e.g., in the case of wildfires. The GPS-tracked volunteer
was slowly walking along a roughly straight path (Fig. 3(c))
inside the forest. Trees, trunks, and other obstacles forced the
wearer to deviate slightly from the straight line path adding
additional environmental variability to the AG link. The Rx
board simulated a radiofrequency wearable device or mobile
phone worn by a hiker. The RSSI and SNR values were stored
on an SD memory. Multiple flights were completed at three
near-ground flying heights: h = {3, 10, 30} m. The wearer
walked forth and back many times up to the limits of the
forested area.

III. DATA ANALYSIS

A. Radio Range and Packet Delivery Ratio

The maximum observed radio range and the recorded PDR
for the three UAV altitudes are reported in Table II. A peak
in the maximum communication distance is experienced for
h = 10 m, whereas the PDR is ≳ 90% in all the cases. Beyond
the maximum radio range, the PDR suddenly decays to zero, in
agreement with the literature on terrestrial LoRa links through
forests. The absence of a strong correlation of these parameters
with the near-ground altitude of the UAV is coherent with the
suburban measurements we reported in [19]. This fact is a
further confirmation that an increase in the UAV altitude can
both improve or degrade the reception of the packets in near-
ground links. Therefore, finding the optimal flying height is not
straightforward, unlike the case of scenarios where heightening
the drone’s altitude can avoid obstacles to establish a LoS ray
path and reduce the PL significantly [21], [22]. To establish
a link even with the most distant people without knowing the
optimal h in the forest wherein the SaR takes place, the altitude
of the aerial drone should vary continuously between the
minimum and maximum possible values. This procedure could
be exploited, for instance, to broadcast the GPS coordinates
of the rescue point.

B. Large-scale Fading

Even if near-ground altitudes were investigated, the mean
PL experienced by the signal is decreased when heightening
h, as it is depicted in Fig. 4. For the sake of benchmarking, the
fitting parameters of the EPL model derived in this work are
reported in Table III, together with the parameters of state-of-
the-art AG NLoS models whose {γ, PL (1 m) , η, σSF } values
were derived from the literature as detailed at the end of §II-C.

Fig. 4. Averaged PL measurements and zoomed-in view of the proposed
model. The lines derived from the model for different flying heights are
coloured in different shades of grey, as in the legend.

(a) (b)

Fig. 5. CDF of the difference between the EPL by the propagation models
and the measured instantaneous PL. (a) Difference and (b) absolute value.

(a) (b)

Fig. 6. (a) Fade depth and (b) statistical distribution of small-scale fading for
some standard fits.
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TABLE IV
FADE DEPTH AND MAXIMUM FADE.

50% fade 0.5 dB 99% fade 20.75 dB
Fade depth 20.25 dB Maximum fade 21.6 dB

The resulting altitude impact factor is lower than in urban
environments since no direct ray path can ever be achieved
by increasing h over the trees. Variable body shadowing
contributes to increasing σSF above the benchmark values.
The average RSE, calculated for the new model according to
(7), is lower than 4.7%, and the statistical validity of the model
is thereof proven.

To evaluate the difference between the EPL by propagation
models and the actual PLi in our scenario, {d3D, h} parame-
ters were given as input to the models to compute (1) assuming
no shadow fading, then the corresponding PLi(d3D, h) is
subtracted from the EPL for each PL measurement. All the
benchmarking models underestimate the fading experienced
by the signal (Fig. 5(a)). The proposed model instead fits the
instantaneous PL better than the existing ones, with a reduction
in the median error between 4.10 and 9.66 dB (Fig. 5(b)).

C. Small-scale Fading

The maximum small-scale fluctuation in the signal strength
over all the measurements exceeded 30 dB, as shown by the
empirical cumulative distribution function (CDF) of the small-
scale fading values in Fig. 6(a). The fade depth is higher
than 20 dB (Table IV) and hence stronger than NLoS AG
models for urban links [21]. The wearer’s movements cause
swift variations in GRx and χ, thus deepening the fading.

Regarding the statistical distribution, the envelope of the
small-scale fading in Fig. 6(b) shows that the small-scale
fading is severe, namely, worse-than-Rayleigh [39]. In par-
ticular, the Rician distribution fit overlaps the Rayleigh fit,
thus confirming the continuous absence of dominant LoS
components. The best fitting for the fading distribution is
determined through maximum log-likelihood and the envelope
of the fading [21]. The Nakagami-m distribution best fits
the gathered data, with fading figure µ = 0.64 and spread
parameter Ω = 32.27 [40]. Hence, multipath scattering is
the dominant small-scale propagation phenomenon [40] due
to body movements and dense foliage.

IV. CONCLUSION

A body-UAV link through a Mediterranean forest has been
evaluated for the first time involving a near-ground UAV
reproducing a SaR scenario. The maximum LoRa radio range
is about 600 m, and hard degradation of the signal is observed
beyond this limit. The large-scale attenuation is higher than
that predicted by state-of-the-art AG NLoS models that are
developed for urban environments since they underestimate the
median PL by about 4-10 dB. The small-scale fading is about
20 dB deep, severe, and follows a Nakagami-m distribution.
The body-UAV PL is very different from that reported over
flat lands (max. radio range ∼ 10 km) [18] and mountain
canyons (max. radio range ∼ 350 m) [41], with more relevant

small-scale fading, which can stimulate new challenges for
localization and emergency communications. Moreover, since
the poplars in the Mediterranean forests were young adults,
even stronger attenuation is expected if the trees in the forested
areas are more ancient or dense [14]. Finally, even though
the proposed model was derived from a particular scenario,
it can nevertheless be extended to different environmental
conditions by introducing proper corrective factors, which can
be borrowed from the growing literature on LoRa propagation.
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