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Multi-slope Path Loss and Position Estimation with
Grid Search and Experimental Results

G. M. Bianco, R. Giuliano, F. Mazzenga, G. Marrocco

Abstract—A transmitting device can be localized
based only on the received signal strength (RSS)
measured by receivers. Typical RSS-based algorithms
assume the a priori knowledge of the path loss
(PL) the signal undergoes in the search area.
Recently, algorithms removing this assumption have
been introduced based on statistical and nonlinear
methods to solve the optimization problem required
to estimate the transmitter’s position. However, such
nonlinear methods could not converge to the optimal
solution, especially in scenarios characterized by multi-
slope or angular dependent PL. This paper considers
an exhaustive search algorithm (ESA) for network
localization based on the weighted least square (WLS)
minimization. The algorithm’s effectiveness is assessed
by simulation and compared with the derived Cramér-
Rao lower bound (CRLB). From experiments with
very noisy measurements in indoor and outdoor, the
localization error with 200 PL measurements employing
the LoRa protocol is 5 m, whereas algorithms assuming
a single slope incur errors between 12 m and 47 m.

Index Terms—Angular dependent PL, multi-slope
PL, network localization, path loss, RSS localization.

I. Introduction
In the last years, wireless networks became pervasive,

ranging from wireless local area networks to wireless sensor
networks and cellular networks. The localization of a radio
frequency signal source (hereafter called target) in an area
covered by a radio network is a crucial issue widely studied.
Proposed strategies to localize the target are based on
different techniques: angle-of-arrival (AoA, also known
as direction-of-arrival, DoA), time-of-arrival (ToA), time-
difference-of-arrival (TDoA) and received signal strength
(RSS) [1]. Combined methods have been proposed, too,
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as DoA-RSS [2] and DoA-ToA [3] hybrid algorithms.
Since AoA, ToA, and TDoA-based techniques require
costly antenna arrays and synchronization, RSS-based
methods are considered low requirements candidates for
localization [4]. This paper focuses on range-based position
estimation exploiting the RSS [5]. The effectiveness of
these algorithms has been extensively analyzed and
corroborated by theoretical and experimental results in
many papers, e.g. [6], [7].
To assess the unknown position of one transmitter

through RSS, it is required to have a network wherein
the locations of some receivers, usually indicated as
anchor points, are known. In the latest dense and ultra-
dense 5G networks [8], the number of anchor points can
increase significantly, as the number of available RSS
measurements. Thanks to the higher number of anchor
points, new RSS-based localization services can be created,
especially to enable indoor navigation, which could greatly
help visually impaired people [9]. In general, anchor
points can move [10] to collect more RSS measurements.
RSS-based localization systems have a large number
of applications. For example, RSS-based localization
techniques can be applied in ad-hoc networks to vehicle
localization [11] or for surveillance purposes [12]. In the
latter case, it is necessary to correctly detect the presence
of the target while avoiding false alarms [13]–[15], and non-
cooperative localization is required when the transmitting
power is unknown [16].
This paper discusses an algorithm that can solve

the RSS-based localization problems based on weighted
least square (WLS) minimization. One application of
the considered estimation technique has been presented
in [17] using weighted data in a simple scenario with
single-slope path loss (PL) propagation models obtained
from experimental measurement campaigns. However, the
localization algorithm has not been analyzed in terms of
computational complexity, accuracy, run time, nor it has
been tested experimentally. Most important, this is the
first work studying the RSS-based localization with multi-
slope [18]–[21] and/or angular dependent [22], [23] PL
models. Single-slope PL models are not accurate in these
complicated propagation environments resulting in higher
localization errors [19], [24]. We assess the algorithm’s
performances through simulation, and we compare them
with the derived Cramér-Rao lower bound (CRLB).
The paper is organized as follows. In section II, we

review the works akin to this one, and we highlight the
novelty introduced by the technique presented in this
paper. In sec. III, we detail the considered PL model and
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TABLE I
RSS-UDPG localization algorithms most similar to the one described in this paper and respective validation areas.

Algorithm Exhaustive PL(d0) Multi-slope Simulated validation Experimental
search estimation PL (largest area considered; validation

normalized by d0) (largest test area)
This work Yes Yes Yes Yes (200 × 200) Yes (62 m × 58 m)

[25] Yes Yes No Yes (1000 × 2000) No
[26] Yes No No Yes (3 × 3) No
[27] Yes No No Yes (10 × 10) No
[28] Yes No No No Yes (15 m × 15 m)
[29] No Yes No Yes (20 × 20) No
[30] No Yes No Yes (40 × 40) No
[31] No Yes No No Yes (Not reported)
[32] No No No Yes (50 × 50) Yes (8 m × 12 m)
[33] No No No Yes (20 × 20) No
[34] No No No Yes (circle of radius 20) No
[35] No No No Yes (circle of radius 50) No
[24] No No No Yes (50 × 50) No
[36] No No No Yes (20 × 20) No
[37] No No No Yes (15 × 10) No

the method commonly used to measure PL. The algorithm
and its computational complexity are discussed in sec. IV.
In sec. V, two variations of the considered algorithm
are introduced concerning the hierarchical search and
the inclusion of PL angular dependence. In sec. VI,
performances indexes are evaluated by simulations in
different conditions and compared with the CRLB. Finally,
the algorithm and classical methods assuming a single
slope are experimentally tested in a setting wherein a dual-
slope PL is expected (sec. VII). Conclusions and possible
future directions are finally drawn in sec. VIII.

II. Related Works
Several RSS-based localization algorithms, such as [38]

and [39], either require excellent knowledge of the radio
propagation PL model for the considered area or are based
on the adoption of the models in [40]. The assumption
of accurate knowledge of the PL specific for the site is
an oversimplification in many cases, leading to erroneous
position estimates, mainly when the area’s radio map
is not updated to account for changes in the topology.
Recently presented RSS-based localization methods jointly
estimate both the transmitter’s position and the PL
model parameters to provide more accurate results. The
algorithm discussed in this paper can be categorized in
this second type of localization, which is usually indicated
as “RSS-based with an unknown distance-power gradient
(RSS-UDPG)” [34].

In [34], the RSS-UDPG problem is formulated and
analyzed, assuming the propagation follows an unknown
lognormal PL. A nonlinear optimization problem with
three unknowns (i.e., the 2D coordinates of the target
and the path loss exponent, PLE) is proposed. The
corresponding nonlinear least square problem is solved
using the Gauss-Newton (GN) algorithm and applying the
Levenberg-Marquardt method.

In [31], a statistical approach is investigated for
indoor RSS-UDPG navigation. The performances of the
Metropolis-Hastings (MH) sampler and the Bayesian GN

are compared with those of two classic methods, the
statistical coverage areas (CA) and the weighted k-nearest
neighbour (WKNN) algorithm. Both the MH and the
Bayesian GN performed better than the CA but worse
than the WKNN.
Reference [27] describes a grid-based RSS centralized

localization. It considers that the PLE of each link
is unknown and ranging between a minimum and a
maximum value. A spatial grid is superimposed over the
search area for the position of the unknown transmitter.
Considering the RSS measurements received by a single
anchor point, two distance values are evaluated using
the minimum and the maximum PLE values. Every
grid point whose distance from the anchor point is
comprised between the two values is voted once. The
voting procedure is repeated for each anchor point. Finally,
the point of the grid having the most votes is the estimated
position of the transmitter. This approach achieves a
rough estimate of the PLE. Another grid-based process
in [28] consists of varying the PLE tentatively so that
the algorithm selects the pair (transmitter position, PLE),
minimizing the least-squares difference with the data. It is
assumed that PL (d0) (the PL at a reference distance d0)
is known and given as input in both cases.
Other techniques of addressing the RSS-UDPG

localization are more different from the one proposed
in this paper. In [35], a joint estimator of position and
PL parameters based on the GN algorithm is studied,
whereas a single cost function is minimized to perform
the joint estimation in [24]. A maximum likelihood
estimator on the transmitter position is employed with
an exhaustive search algorithm (ESA) on the PLE in [26].
In [30], unscented transformation is applied. In [29], [32],
[37], [41], two-step searches divide the PL estimation and
localization problems. In [25], [36], the algorithms are
based on RSS ratios, and ref. [25] performs an exhaustive
search on the PLE value to estimate the location and the
PL (d0). A convex relaxation algorithm is considered in
[33], whereas several methods to estimate the PL without
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relying on distance measurements are proposed in [42] to
complete the classic RSS-based localization subsequently.
Since for a fixed position of the transmitter the PL
intercept and the PLE can be calculated analytically in
closed-form [43], we restrict the exhaustive search to the
transmitter’s position. We show that the WLS RSS-based
localization can be significantly extended to account for
complex propagation scenarios, including multi-slope
PL models and the eventual PL angular dependence,
not addressed in the previous works. In particular, the
WLS-RSS localization was usually considered a nonlinear
optimization problem to solve through algorithms such
as GN. These solving techniques can be hardly applied
to complex PL scenarios, and their instability can cause
them to fail.

The RSS-based localization techniques using WLS
minimization are a well-studied topic. After an extensive
review of the available literature, in Table I we indicate
the works providing contributions that could be considered
similar to those presented in this paper. In the same table,
we also indicate the extensions of their validation areas.

III. Path Loss Models and Measurements
The classic narrowband radio propagation PL model for

a receiver at a distance d from the transmitter (in dB) is

PL(d) = PLm(d) + nS , (1)

where PLm is the mean PL and nS accounts for randomly
variable shadowing, usually modeled as lognormal, with
zero mean and standard deviation σS (in dB). The mean
log-distance PL model PLm(d) can be generalized to
a multi-slope model including multiple distance-power
gradients [40], namely

PLm(d) =
{
Lk + 10γk · log10

(
d

d0

)
, d

(c)
k ≤ d < d

(c)
k+1

}
(2)

and k = 1, 2, . . . ,K, where γk is the k-th PLE, d(c)
K+1 =∞,

d
(c)
1 ≥ d0, and {d(c)

k } are named critical distances [20],
[21]. The d0 is a reference distance, and the {Lk} are the
PLm (d0) values. In the following, d(c)

1 = d0 and d0 = 1 m
are assumed to simplify the notation.

The different PLEs γk, k = 1, 2, . . . ,K in (2) account
for the propagation in various mediums and different
configurations of obstacles around the receiver, causing
distinct multipath effects. From (2), the mean of the PL is
expected to follow a piecewise-linear function [44], and the
PL slope changes at distances d(c)

k , k = 1, 2, . . . ,K. With
the considered formulation, discontinuous behavior of the
mean PL at the critical distances d(c)

k is allowed (Fig. 1).
The model can be further generalized to include the
eventual PL’s angular dependence by introducing critical
angles δ

(c)
k similar to the critical distances. In Table II,

we report some references to other works considering
empirical PL models, including multi-slope and/or angular
dependence. All of these models can be re-formulated as
in (2). From a thorough search of the relevant literature,
we found K ≤ 4, albeit K > 4 is theoretically possible.

Fig. 1. A pictorial example of dual-slope PL models according to
(2).

TABLE II
Selected empirical multi-slope path loss models.

Model Environment K Continuous Angular
(frequency) model dependence

[45] Indoor 4 Yes No
(900 MHz)

[46] Urban 4 No Yes
(900 MHz)

[47] Railway 3 Yes No
(28 GHz)

[48] Indoor 2 No No
(27.5 GHz)

[49] Orchad 2 No No
(5.8 GHz)

[50] Tunnel 2 No No
(900 MHz)

In the current practice, the PL(d) from a transmitter
to a receiver at a distance d can be estimated from the
RSSI (RSS indicator), and the signal-to-noise ratio (SNR)
returned by the chip [17]

P L = PT + GT + GR + 10 · log10

(
1 + 1

SNR

)
− RSSI, (3)

where PT is the transmission power, whereas GT and GR
are the gains of the transmitting and receiving antennas,
respectively. The variables in (3) are in the dB scale except
for the SNR, which is in the linear scale. Measurements
obtained from (3) can be used to estimate the mean PL
model parameters, i.e. γk, Lk and the critical distances
{d(c)
k } in (2) if the distance between the transmitter and

receiver is known.
It is worth noticing that assuming PT , GT , and GR are

unknown but do not vary (for instance, omnidirectional
transmitting and receiving antennas), the estimated PL
in (2) would differ from the actual value by a constant,
which can be accounted for in Lk. If these parameters are
allowed to vary around their effective values randomly (e.g.
multiple receivers with different characteristics in terms of
antenna gain and losses), the fluctuations would introduce
an additional noise in the PL measurements, which can
be added to the shadowing fluctuations. This noise would
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alter the evaluated Lk, whereas the algorithm can smooth
the fluctuations.

IV. Localization Algorithm

In this section, the ESA is described, and its
computational complexity is evaluated.

A. Exhaustive Search

Indicating with (xT , yT )1 the unknown position of the
transmitter, we assume M PL measurements are taken
over the entire area and that for each PL measurement, the
position of the receiver PR = {(xm, ym)},m = 1, . . . ,M , is
known. The M PL measurements can be used to estimate
the parameters of the mean PL model in (2) and the
transmitter’s position by minimizing the following WLS
function

ε
(
{Lk}Kk=1, {γk}Kk=1, {d

(c)
k }

K
k=1, xT , yT

)
=

K∑
k=1

Nk∑
n=1

wkn
∣∣PLkn − Lk − 10γk log10 (dkn)

∣∣2 , (4)

where wkn is the weight of the PLkn measure, Nk is
the cardinality of the k-th subset, k = 1, . . . ,K of PL
measurements in PR, including the PL values PLkn ∈ PR
such that the distance dkn between the receiver and the
transmitter is d(c)

k ≤ dkn < d
(c)
k+1 for n = 1, 2, . . . , Nk. We

have M = N1 + N2 + . . . + NK , and the partitioning of
the M PL measurements into the K subsets to be used
in (4) varies each time with the assumed transmitter’s
position. Hereafter, wkn = w = 1 is implied for the sake
of conciseness without any loss of generality.

The cost function (4) is non-convex and has multiple
local minima [34]. However, it can become convex with
respect to γk and Lk, k = 1, . . . ,K, when fixing the
(xT , yT ) pair. To minimize (4) for fixed K and assigned
critical distances d

(c)
k , we first need to partition the

available set of M measurements into the K subsets
{PLkn}, n = 1, . . . , Nk, k = 1, . . . ,K. For this purpose, we
start by fixing the position (xT , yT ) of the transmitter and
then evaluate the set of distances {dmT }, m = 1, . . . ,M
between the M measurements points and the transmitter.
The m-th PL measurement is assigned to the k-th subset
if d(c)

k ≤ dmT < d
(c)
k+1. At the end of the partitioning

process, we reindex with dkn the Nk receivers’ distances
whose PL measurements have been included in the k-th
subset following the previous criterion.

For the given (xT , yT ) and the corresponding partition
of the PL measurements, from (4), it can be observed that
the optimal values of {Lk}Kk=1 and the PLEs {γk}Kk=1 can

1For simplicity, in the following, we consider the bidimensional
case. Nevertheless, the procedure can be easily extended to the
tridimensional case.

be determined in closed-form by solving the following K
separated linear systems with two equations

LkNk + 10γk
Nk∑
n=1

log10(dkn) =
Nk∑
n=1

PLkn

Lk
Nk∑
n=1

log10(dkn) + 10γk
Nk∑
n=1

(log10 (dkn))2 =
Nk∑
n=1

PLkn log10(dkn), k = 1, . . . ,K

(5)

where dkn =
√

(xkn − xT )2 + (ykn − yT )2, n = 1, . . . , Nk.
Solving (5) we obtain that for each k, k = 1, . . . ,K, the
corresponding Lk and γk are

Lk =

Nk∑
n=1

PLkn − 10γk
Nk∑
n=1

log10(dkn)

Nk
(6)

and

γk =
Nk

Nk∑
n=1

PLkn log10(dkn)−
Nk∑
l=1

PLkl
Nk∑
n=1

log10(dkn)

10Nk
Nk∑
n=1

(log10(dkn))2 − 10
(
Nk∑
n=1

log10(dkn)
)2 .

(7)
The K systems (5) should not be under-determined, and,
in general, the number of available measurements for
each one of the K systems needs to be higher than the
number of the corresponding PL parameters to evaluate
(6) and (7). In the presence of shadowing, the number
of measurements M � 2K + 1 is required to achieve an
accurate estimate of the position.
The previous procedure is based on the implicit

knowledge of the transmitter position (xT , yT ), which
is unknown and must be determined to minimize (4).
Therefore, we assume that (xT , yT ) can vary over a
spatial grid of candidate points, superimposed on the
considered area by excluding the eventual positions where
the transmitter cannot be. The overall minimization
procedure can now be stated as follows, w.r.t. Fig. 2:
1) start from M PL measurements taken at known

points (xm, ym), m = 1, . . . ,M in the area;
2) assign the K−1 critical distances, d(c)

k , k = 2, . . . ,K;
3) select the candidate point (xT , yT ) in the grid

and evaluate the distances of receivers dmT , m =
1, 2, . . . ,M from the selected transmitter point in the
grid;

4) partition the set of the M PL measurements into
the K subsets {PLkn}, n = 1, . . . , Nk assigning the
measure PLm to the k-th subset if the corresponding
receiver distance dmT is such that d(c)

k ≤ dmT <

d
(c)
k+1;

5) for each k, k = 1, 2, . . . ,K, calculate Lk and γk using
(6) and (7), respectively;

6) evaluate the minimum least square error in (4)
obtained with the selected (xT , yT ) and the
corresponding Lk and γk in (6) and (7) for k =
1, . . . ,K obtained in the previous step, and store
them;
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Fig. 2. Flow chart describing the proposed UDPG-RSS-based
localization ESA.

7) repeat the calculation procedure from point 3) by
selecting the next candidate transmitter point on
the grid until all the points in the grid have been
considered;

8) after the examination of all the candidate points,
the tuple

[
(x̂T , ŷT ), {L̂k}Kk=1, {γ̂k}Kk=1

]
achieving the

minimum least square error in (4) provides the best
solution for minimizing (4).

We implicitly assumed the K − 1 critical distances d(c)
k

had been set. If d(c)
k are not available, it is possible

to repeat the procedure by varying d
(c)
k over a set of

values taking into account that d0 = d
(c)
1 < d

(c)
2 <

. . . < d
(c)
K . In the more common case when K = 2,

we have one critical distance to set at every iteration
of the optimization algorithm. Finally, we select the

TABLE III
Terms contributing to the computational complexity.

Operation Number of Multiplications
{γ1, ..., γK} evaluation 2M + 7K
{L1, ..., LK} evaluation 3K

ε evaluation 4M
Overall complexity O (Q · nP ·K ·M)

tuple [{d̂(c)
k }Kk=1, (x̂T , ŷT ), {L̂k}Kk=1, {γ̂k}Kk=1] providing the

absolute minimum of (4) concerning the configurations of
critical distances d(c)

k .

B. Computational Complexity of the Algorithm
Let Q be the number of sets of K − 1 elements, each

containing the values of the critical distances {d(c)
k }Kk=1 to

be considered in the position estimation. Let nP be the
number of candidate points on the grid to be analyzed
in each algorithm iteration for a given set of critical
distances. Calculations from point 3) in Fig. 2 are then
repeated Q×nP times. Accordingly, the evaluation of (6),
(7) and of the corresponding values of the WLS error in
(4) are carried out Q × nP × K times. In the case of a
regular grid of candidate points uniformly spaced by ∆
along the x and y axes, the number of grid points can be
approximated as nP = dA/∆2e where A is the extension
of the considered area and d·e is the lowest integer higher
than the argument. Thus, in general, the computational
complexity of the considered algorithm is polynomial with
the number nP of candidate points for fixed Q and K. The
terms contributing to the computational complexity2 are
resumed in Table III.

V. Variations of the Algorithm
In this section, the reduction of the ESA computational

complexity through hierarchical search and the
partitioning accounting for the PL angular dependence
are discussed.

A. Hierarchical Search
The basic algorithm detailed in the previous section

assumes that the search of the transmitter position
(xT , yT ) is carried out over a grid of points. Considering a
regularly spaced grid with points uniformly spaced along
the x and y axes by ∆, for a given area A, the total number
of points to be tested is

nP =
⌈
A

∆2

⌉
. (8)

To reduce the number of candidate points nP , the
following hierarchical procedure can be adopted,
exploiting the mostly monotonic behavior of (4) [Fig. 3(a)].
Accordingly, the search for the best candidate point is
carried out in two steps. The procedure starts with a
search over a coarse grid with points uniformly spaced

2We assumed logarithms are tabulated.



6

(a)

(b)

Fig. 3. (a) Error function ε evaluated from (4) whenM = 100, σ2
S =

12 dB over a 1000 m × 1000 m search area (single-slope PL), and (b)
corresponding contour plot and candidate points when varying T .

with a relatively large step q∆, where q > 1 is an integer.
For the same area A, the number of candidate points is
now proportional to A/(q∆)2 < nP . After the first search
step, we order the WLS errors in (4) corresponding to the
considered candidate points in ascending order. To start
the second search stage, we select the T candidate points
achieving the first T ordered WLS error values. Then,
the search for the best transmitter position proceeds
over T smaller grids, each centred around one of the
selected T target points [Fig. 3(b)]. The spacing of
points in these grids is reduced to ∆. For simplicity,
considering square grids, we assume each one extends
from −m∆/2 to (m− 1)∆/2 along the x and y axes, and
m is an integer. As an example, let us impose m = 2q.
Therefore, the second search is carried out over (m2 − 1)
candidate points for each grid. In the considered two-step
hierarchical search, the total number of candidate points
can be approximated as

αnP ∼=
nP
q2 + (m2 − 1) · T, (9)

where 0 < α < 1.

Even in this simple case, the optimal set of parameters
(q,m, T ) depends on the specific search strategy, on the
network topology, on how the grid is superimposed over
the search area and on the characteristics of the radio
propagation environment. Generally, the lower the α, the
higher can be errors caused by the coarse grid step and
the possibility of falling in one local minimum.

B. PL Angular Dependence
As shown in sec. IV, the considered algorithm introduces

the partitioning of M available PL measurements. The
partition depends on the critical distances and the
position of the selected candidate point. Partitioning can
be based on the critical angles, too, considering the PL
measurements’ angular dependence for each candidate
point and the critical distances. For each candidate point,
the subsets of PL measurements falling into one sector
are now used to run the WLS minimization (Fig. 4). Even
in this case, the minimization of the WLS can be run for
each angular sector independently of the other sectors,
and equations (6) and (7) are still valid provided the K
subsets of PL measurements are properly redefined for
each candidate point. Naturally, K accounts now also for
the number of sectors considered in the minimization,
and the algorithm can run multiple times by varying the
critical angles if needed.

VI. Performance Analysis
In this section, the performance of the considered

RSS-based position estimation algorithm is evaluated by
simulations in terms of achievable accuracy. The numerical
results are compared with the derived CRLB.
We impose ∆ = 1 m, and the transmitter’s position

randomly varies around ±∆/2 in the horizontal and
vertical directions near the search area’s centre in each
trial. M anchor points are then randomly positioned in
the area. The corresponding PLs are generated by (1) and

Fig. 4. A simple scheme of the angular partition of PL measurements
with respect to each candidate point: a case of three sectors
S1, S2, S3.
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TABLE IV
Simulation parameters used to generate the PL data for
the performance analysis. A square search area having

200 m side and Lk = L = 30 dB are considered.

PL model PL Exponents σ2
S[dB]

Single-slope γ = 2 {3, 12}
Dual-slope γ1 = 2,γ2 = 4 3

Two angular sectors γ1 = 2,γ2 = 4 3

(2), including shadowing, which is modeled as a zero-mean
normal random variable with standard deviation σS as in
(1). The following simulations are performed according to
Table IV, and the results are averaged on 1000 trials. We
consider the case K = 2 and generate half of the PL data
per slope for simplicity. Moreover, we omit the standard
deviations (STDs) corresponding to the average errors
since, from our simulations, the STDs are primarily due
to the shadow fading, and their values are slightly lower
than the average errors themselves. Lastly, to evaluate the
CRLB, we avoid anchor points’ distributions resulting in
badly conditioned or singular Fisher information matrixes
(for example, anchor points along a line or placed on a
circle around the target).

The analyses are repeated using single-step and
hierarchical search. We select q = m = 10 and T = 5
as hierarchical search parameters, leading to α ∼= 0.02
from (9). The difference in the position estimate with and
without hierarchical search is negligible.

A. Cramér-Rao Lower Bound
The CRLB expresses the minimum variance of unbiased

estimators of deterministic parameters. From (2), the
estimator gkn(θ) can be expressed as

gkn(xn, yn, γk, Lk) = Lk + 10γk · log10

(
dkn
d0

)
, (10)

and θ = [x, y, γ1, ..., γK , L1, ..., LK ]T is the unknown
parameters vector. From [34], the PL observations PLkn
have a probability density function

f
(
PLkn; θ

)
= 1√

2πσS
exp

{
−
(
PLkn − gkn(θ)

)2

2σ2
S

}
.

(11)
By assuming that the observations are statistically
independent, the joint distribution of the observation
matrix3 PL is

f
(
PL; θ

)
=

K∏
k=1

Nk∏
n=1

f
(
PLkn; θ

)
. (12)

The CRLB is evaluated from the inverse of the Fisher
information matrix

F = −E
[
∇θ
(
∇θ ln f(PL; θ)

)T ]
. (13)

3Bold symbols denote matrixes.

Accordingly, the log-likelihood function is

l(θ) = − 1
2σ2

S

K∑
k=1

Nk∑
n=1

(
PLkn − gkn(θ)

)2
, (14)

and the Fisher matrix can be expressed as

[F]ij = −E
[
∂2l(θ)
∂θi∂θj

]
= 1
σ2
S

K∑
k=1

Nk∑
n=1

∂gkn(θ)
∂θi

∂gkn(θ)
∂θj

.

(15)
The F can consequently be evaluated from the partial
derivatives of the estimator, which are

∂gkn(θ)
∂x

= 10 (xT − xkn)
ln(10) · γk

d2
kn

, (16)

∂gkn(θ)
∂y

= 10 (yT − ykn)
ln(10) · γk

d2
kn

, (17)

∂gkn(θ)
∂γk

= 10
ln(10) · ln(dkn), (18)

∂gkn(θ)
∂Lk

= 1. (19)

Lastly, the CRLBs on the estimation errors are evaluated
as

e2
rms ≥

[
F−1]

11 +
[
F−1]

22 , (20)

σ2
γk
≥
[
F−1]

2+k,2+k , (21)

σ2
Lk
≥
[
F−1]

2+K+k,2+K+k , (22)

where e2
rms, σ2

γk
, σ2

Lk
are the bounds on the location

errors, γk and Lk respectively. Accordingly, the root
mean square error (RMSE) on the location is erms =√

(xT − x̂T )2 + (yT − ŷT )2, whereas the errors on the PL
parameters are σγk

= |γk − γ̂k| and σLk
=
∣∣∣Lk − L̂k∣∣∣.

In Fig. 5, the average RMSEs returned by the proposed
algorithm are compared with the CRLB for two values of
σS . We randomly generate the anchor points’ positions
once and keep them fixed to assess the effects of the
σS on the errors. On average, the algorithm achieves
the CRLB independently from the shadowing, though the
noise increases the minimum theoretical achievable errors.

B. Multi-slope PL
We examine the accuracy of the considered algorithm

in the case of a dual-slope PL. The anchor’s positions are
randomly generated at each iteration, and d(c)

2 = 50 m is
set. We give the algorithm firstly the correct value of d(c)

2
and, secondly, a wrong value d(c)

2 = 75 m as input.
If the algorithm knows the exact d(c)

2 , it achieves the
CRLB (Fig. 6). Obliviously, a wrong value of d(c)

2 increases
the algorithm’s errors. In particular, the location error
increases significantly if a single-slope is assumed when
running the algorithm, remarking the importance of a
valid assumption on the radio propagation of the area.
Instead, the algorithm is quite robust to errors on the
critical distances if the number of measurements is high
enough. For instance, the location RMSE is still lower than
1 m for M ≥ 140.
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Fig. 5. Performance of the proposed localization algorithm (dashed
lines) compared with the CRLB (continuous lines) for σ2

S = 3 dB
and σ2

S = 12 dB.

C. Angular Dependent PL

Finally, we apply the algorithm in the case of an angular
dependent PL. We divide the search area into two equal
angular sectors, each characterized by a different PLE.
The erms for M = 100 and M = 200 are compared
to the CRLB in Fig. 7 when the error on the assumed
δ

(c)
2 increases up to 15o. Even in this case, the error is
similar to the CRLB if the δ(c)

2 is known. Interestingly,
an error as low as 2.5o appears to nullify the benefit of
a higher number of collected RSS measurements when
M ≥ 100, and a sectorization error higher than 5o

results in the failure of the algorithm. Due to the wrong
data partitioning, the RSS-based localization in scenarios
characterized by an angular dependent PL is thus more
critical than in the case of a multi-slope PL since a slightly
incorrect δ(c)

2 causes high errors on the target’s location.
The partitioning precision is expected to be particularly
relevant when employing sectorized antennas [2] for the
RSS-based localization.

Fig. 6. Performance of the proposed localization algorithm compared
with the CRLB in the dual-slope case when the input d(c)

2 value is
either correct (d(c)

2 = 50 m) or wrong (d(c)
2 = 75 m).

VII. Experimental Results
The proposed algorithm is tested in a real scenario

wherein a dual-slope PL model is expected. The
transmitting and the receiving radios consist of Arduino
Uno boards and Dragino LoRa shields connected to 868
MHz dipoles. The transmitting board is programmed
to transmit one LoRa packet every 3 seconds (LoRa
transmission parameters as in [51]). Horizontally polarized
electromagnetic waves are exploited, and the transmitting
radio is placed on the ground. A 62 m × 58 m area,
including a building of the University of Rome Tor
Vergata, is selected as the test area, as detailed in Fig. 8.
A network composed of five moving anchor points is then
set up. Each receiving board is carried by a volunteer
along a straight-line path and sends measured RSSI and
SNR to a laptop via Wi-Fi, then the PL is evaluated
according to (3). Every PL measurement is averaged on
three packets so that 200 measurements are collected in
6 minutes. Due to the anchor points positions, a dual-
slope PL is experienced, one for the outdoor (receivers 1,
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Fig. 7. Performance of the proposed localization algorithm compared
with the CRLB in the case of two angular sectors having different PL
when increasing the error on the input δ(c)

2 value.

(a) (b)

(c)

Fig. 8. Search area and transmitter location selected for the
experimentation of the localization algorithms. (a) Satellite image
of the search area, (b) sketch of a grid superimposed over the search
area, and (c) planimetry of the indoor environment considered. The
target position and the paths of the five numbered receivers are
shown.

2, 3, and 4) and one for the indoor (receiver number 5)
environments.

Based on the search area analysis and the anchor points’
topology, since the indoor area is 16 m × 62 m, the
algorithm is set to search for the critical distance between
5 m and 40 m using a step of 5 m. The data are given
as input to four localization algorithms simultaneously:
the proposed algorithm, an RSS-UDPG ESA estimating
(xT , yT ) and L fixed γ exhaustively searched [25], the GN
RSS-UDPG algorithm [34], and a classic RSS-based ESA
assuming free-space PL [38]. After 6 minutes, the error on
the location returned by the presented algorithm is 5 m,
significantly outperforming the methods which assume a
single slope and return errors comprised between 12 m and
47 m (Fig. 9). It is worth noticing that the experimental
data are affected by a very high noise due to misalignments
between the transmitting and receiving dipoles, resulting

Fig. 9. Experimental localization errors returned by the four tested
algorithms.

in variable polarization losses and values of the gains.
Because of this additional noise, the RSS measurement
can be considered affected by an extremely high shadow
fading. In practical applications, the additional noise can
be reduced with near-isotropic antennas and employing
linear and circularly polarized electromagnetic waves to
make the polarization losses constant and equal to −3 dB.
When considering the STDs numerically evaluated and the
uncertainty on the unknown d(c)

2 , the error is coherent with
the simulations shown in Fig. 5 and Fig. 6.
Six minutes could be an excessive long localization

time for some applications. It should be noticed that this
long time is due to the duty cycle imposed by the LoRa
protocol [17], [52], which influenced the maximum packet
rate achievable by the transceiver used in the experiment.
We report the run times of the considered optimization
techniques in Fig. 10 corresponding to calculations
based on experimental data and those obtained by
simulation. Data in Fig. 10 are obtained considering the
hardware/software settings in Table V and the test area
in Fig. 8. Naturally, the ESAs’ run times are mostly
unaffected by the datasets, unlike the GN-based nonlinear
technique. The proposed algorithm performed similarly to
traditional methods and registered a maximum run time of
600 ms during the experiment. In the case of no exhaustive
search over the critical distance, the run time is only
slightly higher than the one of the RSS ESA. Therefore,
in realistic operative conditions, the localization time is
expected to be determined by the measurement period.
The measurements can be speeded up by employing a
high number of anchor points. If the measurement time
is in the same order of magnitude as the lowest run time
of the proposed method in Fig. 10, localization with 200
experimental data is carried out in about 20 seconds.

VIII. Conclusion and Future Directions
This paper introduced and analyzed an ESA for RSS-

UDPG localization of a transmitter in a search area
covered by a radio network. Thanks to an exhaustive
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TABLE V
Hardware and software utilized for the run times

evaluation.

Central Intel® Core Processor 3.60 GHz
processing unit i7-9700KF frequency
Random-access 16 GB Software Matlab®

memory R2019b

Fig. 10. Run time of the four tested algorithms when employing
simulated or experimental PL values.

search of the transmitter’s candidate positions, the
PL parameters are evaluated analytically. The position
estimation algorithm can achieve the CRLB in every
propagation scenario, including complex multi-slope and
angular dependent PL models. Interestingly, angular
dependent PL scenarios resulted in being the most
critical case. According to simulations, the method allows
achieving good accuracy even for a relatively small number
of RSS measurements. The algorithm was tested in a
network composed of 5 moving anchor points covering
both outdoor and indoor areas. From the test exploiting
very noisy RSS measurement, the algorithm returns a
localization error of 5 m with 200 PL measurements, while
classic techniques assuming a single slope are affected by
errors up to 47 m.
Before concluding the paper, it could be of interest

to outline some future directions of this research.
Data partitioning could be optimized to improve the
accuracy of the position estimate. To this purpose, the
optimization of the piecewise-linear approximation [53]
or unsupervised data clustering [54] could be exploited.
However, the overall run time of the algorithm should be
kept short. Another interesting topic is the simultaneous
localization of multiple transmitters in a complicated radio
propagation environment, wherein it is not possible to
cluster similar measured PL based only on the RSS [55].
In this case, hybrid methods also exploiting DoA [2] or
ToA [56] could be helpful to overcome this challenge by
combining information from the different signal sources to
benefit the network localization.
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